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DO AEROSOLS CHANGE CLOUD
COVER AND AFFECT CLIMATE?

Yes

IN WHAT WAYS?
Direct (scattering, absorption)
Indirect (albedo, lifetime)
Semi-direct, ...
Autoconversion, latent heat, ...

HOW MUCH?
292999929
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Aerosol influences on climate and climate change

@ Relation to climate change over the industrial era

= Aerosol properties and processes pertinent to
climate influences

Recent studies examining aerosol processes

=% @ Recent studies examining aerosol indirect effects

== Imphcatlons of aerosol forcing on interpretation of

»& climate change
- The path forward

Concluding remarks




AEROSOL INFLUENCES ON
CLIMATE AND CLIMATE CHANGE



Radiative Forcing by Tropospheric Aerosol

Land Use Changes Industrial Emissions Biomass Burning
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AEROSOL IN MEXICO CITY BASIN




AEROSOL IN MEXICO CITY BASIN

Light scattering by aerosols decreases absorption of solar radiation.



AEROSOLS AS SEEN FROM SPACE

Fire plumes from southern Mexico transported north into Gulf of Mexico.




CLOUD BRIGHTENING BY SHIP TRACKS
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Aerosols from sh1p emissions enhance reﬂectlwty of marine stratus.



RELATION TO CLIMATE CHANGE
OVER THE INDUSTRIAL ERA



GLOBAL ENERGY BALANCE

Global and annual average energy fluxes in watts per square meter
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CLIMATE FORCINGS OVER THE
INDUSTRIAL PERIOD
Extracted from IPCC AR4 (2007)

Long Lived
Greenhouse Gases N,0
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Forcing, W m-2
Total forcing includes other anthropogenic and natural (solar) forcings.
Forcing by tropospheric ozone, ~0.35 W m-2, is the greatest of these.
Uncertainty in aerosol forcing dominates uncertainty in total forcing.
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Hunter, Schwartz, Wagener & Benkovitz, GRL 1993
Greatest cooling 1s midlatitude NH summer during rapid increase of sulfur

emission.



REQUIREMENTS TO QUANTIFY AEROSOL FORCING

Quantify change in Earth radiation budget due to aerosols as f(time).
— Direct radiative influences; Indirect influences, on clouds and precip.
— Input to climate models.
— Required accuracy in forcing ca. 0.3 W m-2.

Relate quantitatively to emissions of primary aerosols and precursor gases.
— Necessary for past, present & projected future forcing as f(x, y, z, 1).

Represent processes governing aerosol radiative influences in models.
— Chemical transport models & climate models.

— Required optical properties: Extinction, single scattering albedo,
phase function as f(A; x, y, z, ©).
— Required cloud-nucleating properties: CCN, IFN conc as f(supersat'n)

Understand processes governing aerosol amount and chem & microphys
properties as f(x, y, z, ).

Calculate aerosol opfical and cloud nucleating properties from size-distrib
composition.

Evaluate accuracy of models by observation.



AEROSOL PROPERTIES AND
PROCESSES



AEROSOL PROCESSES THAT MUST BE
UNDERSTOOD AND REPRESENTED IN MODELS
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Modified from Ghan and Schwartz, Bull. Amer. Meterol Soc., 2007



APPROACH TO DETERMINE
AEROSOL FORCING

Numerical simulation of physical processes

Radiation transfer in clouds
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Isomorphism of processes to computer code

Modeling aerosol processes requires understanding these processes,
developing and testing their numerical representations, and
incorporating these representations in global scale models.



ARE WE THERE YET?

Much research: hundreds of papers per year.
— Process research - field studies, lab studies, theory, modeling.
— Several major field campaigns per year.
— Observations - surface, satellite, in-situ.

Poor understanding of primary aerosol emissions: anthro & natural.

Pretty good model-observation agreement in some observables,
e.g., optical depth; compensation in models.

Poor agreement 1n attribution to chemical substances; anthro vs. natural.

Forcing 1s still quite uncertain.
— IPCC AR4 (2007): direct, +0.4 W m-2; first indirect, +0.4, -0.8 W m-2.
— Other indirect effects even more poorly understood and quantified.

Still in discovery stage: chemistry, microphysics.
— New particle formation, involving not the usual suspects, affecting
aerosol dynamics and number concentration.
— Large contribution of secondary organics.
— New effects, especially involving clouds, autoconversion.

Models are lagging the research.



ESTIMATES OF AEROSOL DIRECT FORCING

By linear model and by radiation transfer modeling
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Aerosol Optical Thickness at 550 nm
Global average sulfate optical thickness is 0.03: 1 W m-2? cooling.

In continental U. S. typical aerosol optical thickness is 0.1: 3 W m-2 cooling.
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AEROSOL OPTICAL DEPTH AT ARM SGP

Fifteen years of daily average 500 nm AOD in North Central Oklahoma

500—nm AOD
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Michalsky, Denn, Flynn, Hodges, Kiedron, Koontz, Schlemmer, Schwartz, JGR, 2010

Green curve 1s LOWESS (locally weighted scatterplot smoothing) fit.



AEROSOL COMPOSITION AT ARM SGP

Seven years of daily average composition in North Central Oklahoma
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Black curve 1s LOWESS (locally weighted scatterplot smoothing) fit.
Note summertime peak of sulfate.



AEROSOL COMPOSITION AT ARM SGP

Six days of 30-minute average composition in North Central Oklahoma
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e First data from new aerosol mass spectrometer installed at SGP.
e Continuous data; for particles with diameter < 0.5 ym.
* Note high nitrate compared to sulfate; substantial organic component.



UNCERTAINTY IN AEROSOL DIRECT FORCING

Resulting from typical uncertainty in measurements of input variables
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resulting from uncertainties in the individual parameters.
Black bar denotes resultant uncertainty in forcing.
Uncertainties are substantial in context of forcings over industrial period.



MONTHLY AVERAGE AEROSOL JUNE 1997

Polder radiometer on Adeos satellite
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Small particles are from
gas-to-particle conversion.




AEROSOL OPTICAL DEPTH IN 17 MODELS
(AEROCOM)

Comparison also with surface and satellite observations
Observed

0.16

Satellite
Surface WAl
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©
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Kinne et al., ACP, 2006
Surface measurements: AERONET network.

Satellite measurements: composite from multiple instruments/platforms.
Are the models getting the “right” answer for the wrong reason?

Are the models getting the “right” answer because the answer 1s known?
Are the satellites getting the “right” answer because the answer 1s known?
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23 VIEWS OF EARTH’S AEROSOL OPTICAL DEPTH

Annual mean in 4 Satellites, 18 Models and Model Medlan

AVHRR_CIS Meon 1. 61421{ 01 POL.DER ODSSOD_AER 0. 1255
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e
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5 T
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* Measurements: 0.12 —0.19.
e Models: Median 0.12; range 0.07 — 0.24.
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http://nansen.ipsl.jussieu.fr/ AEROCOM/data.html
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SEA SALT AEROSOL MASS EMISSIONS
Annual average in AEROCOM models; 1012 kg yr-1
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Textor et al., ACP 2006, courtesy Michael Schulz
http://dataipsl.ipsl.jussieu.fr/cgi-bin/ AEROCOM/aerocom/aerocom_work_annualrs.pl

Range of global annual mean is a factor of 50.
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TURNOVER TIME AS INTENSIVE VARIABLE

Five aerosol species in 16 global chemical transport models
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Textor et al., ACP, 2006
Characterize and compare processes in chemical transport models.

Turnover time displays wide model-to-model variance.
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AEROSOL PROPERTIES IN 16 MODELS

Zonal mean emissions, loading, effective radius, optical depth
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e Emissions and optical properties differ much more than optical depth
because of compensating effects of different variables.



RECENT STUDIES EXAMINING
AEROSOL PROCESSES



MEASURED ORGANIC AEROSOL

GREATLY EXCEEDS MODELED
Mexico City, April 9, 2003, prior to 2 p.m.
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Modified from Volkamer et al., GRL, 2006

Comparison of measured oxygenated organic aerosol (OOA) and modeled
secondary organic aerosol vs. decrease 1n volatile organic carbon.



SECONDARY AEROSOL FORMATION

Correlation of organic aerosol with acetylene (primary) and
1sopropyl nitrate (secondary) during New England Air Quality Study
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Tight correlation with 1sopropyl nitrate shows organic aerosol is largely
secondary.




ORGANIC CONTRIBUTIONS TO TROPOSPHERIC
AEROSOL

Mass-spec determination of primary vs secondary organics
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Evolution of Organic Aerosols in the Atmosphere
J. L. Jimenez, et al. Science 326, 1525 (2009)

New analytical techniques permit identification of formation mechanisms.



SECONDARY AEROSOL PRODUCTION
Eight aircraft flights above and downwind of Mexico City, March 2006
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Parcel photochemical age measured using -Log(NOx/NOy) as clock.
Aerosol normalized to CO above background to account for dilution.
Fivefold increase in organic aerosol.

Volume and number scales are proportional, both indicating ~ 5-fold
increase with age over period corresponding to ~ 1 day.

Measured increase in organic aerosol exceeds modeled based on

laboratory experiments and measured volatile organic carbon fenfold.



NEW PARTICLE FORMATION EVENT
Mexico City, March 16, 2006
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Smith, Dunn, VanReken, lida, Stolzenburg, McMurry, & Huey, GRL, 2008
Mass SpEC shows Composmon Of ncw partlcles 1S dommated by organics.

Particle growth rate exceeds that by sulfuric acid by order of magnitude.
New particles show hygroscopic growth characteristic of soluble material.
Particles grow to CCN active range (100 nm diameter) in hours.

Large fraction of 100 nm particles are CCN active at 0.5% supersaturation.



AEROSOL TRANSPORT AND EVOLUTION
Mexico City, March 22, 2006
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NEW MEASUREMENTS YIELD NEW INSIGHTS

0’ Nucleation Event: Colorado, USA 09/16/10
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RECENT STUDIES EXAMINING
AEROSOL INDIRECT EFFECTS



CLOUD ALBEDO AND FORCING CALCULATED FROM
MEASURED EFFECTIVE RADIUS AND LIQUID WATER PATH
North Central Oklahoma

. . . = 02/18/2000
Effective radius determined from slope of 0.9 | - 10/21/2000

Optical depth vs. Liquid water path L 1026/2000
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Cloud albedo is calculated for observed data and for average effective radius for each day.
Forcing is calculated for indicated conditions relative to October 26.
Radiative forcing for solar zenith angle 60° and liquid water path 100 g m™
Date, 2000 Effective radius re, Optical Net flux at TOA Forcing relative to
pm Depth W m2 10/26, W m™2
10/26 10.2 15.1 293 —
02/18 5.8 28.3 240 53

Kim, Schwartz, Miller, and Min, JGR, 2003



CRITICAL SUPERSATURATION

Dependence on particle size and composition
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Particles above cloud layer showed greater increase in supersaturation
than particles below cloud.

Composition measured with PILS (particle into liquid sampler) showed
high organic fraction in above cloud aerosol.

Measurements with aerosol mass spectrometer showed organic material in

CCN size range.



Aitken mode particles (D < 100 nm)
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Particle number concentration, cm'3

Strong dependence on new particle

AEROSOL PARTICLE NUMBER
CONCENTRATION

Average particle number concentrations North America, July 2004

Accumulation mode particles (D = 100 nm)
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formation mechanism
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Chang, Schwartz, McGraw & Lewis, > 2009

Strong dependence on size of

primary emissions

Accurate representation of number concentrations and aerosol indirect
effects requires improved knowledge of new particle formation rate
and size distributed emissions.
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TOTAL FORCING, ANNUAL AVERAGE
GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration
(a) 1.42 Direct + Indirect (Method II) + GHG + O, W m?2

2t bbb Udbhbdbbiloan

-
(=]

Kiehl et al., JGR, 2000

Indirect forcing is highly sensitive to the assumed relation between sulfate
concentration and cloud droplet number concentration.



IMPLICATIONS



TOO ROSY A PICTURE?

Ensemble of 58 model runs with 14 global climate models
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¢ ¢ Simulations that incorporate anthropogenic forcings, including increasing
greenhouse gas concentrations and the effects of aerosols, and that also
incorporate natural external forcings provide a consistent explanation of the
observed temperature record.

¢ ¢ These simulations used models with different climate sensitivities, rates of
ocean heat uptake and magnitudes and types of forcings.

How can this be?

IPCC AR4, 2007
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CORRELATION OF AEROSOL FORCING, TOTAL
FORCING, AND SENSITIVITY IN CLIMATE MODELS

Nine coupled ocean-atmosphere models; two energy balance models

CO2 Doubling Temperature ATgx’ K
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Modified from Kiehl, GRL, 2007
Total forcing 1s linearly correlated with inverse sensitivities of the models.

Climate models with lower sensitivity (higher inverse sensitivity)
employed a greater total forcing.

Slope (0.8 K) 1s approximately equal to observed temperature change.
Models accurately reproduce known temperature change.

Greater total forcing 1s due to smaller (less negative) aerosol forcing.



THE PATH FORWARD

Determine aerosol forcing with high accuracy.
Multiple approaches are required:
Laboratory studies of aerosol processes.

Field measurements of aerosol processes and properties:
emissions, new particle formation, evolution, size
distributed composition, optical properties, CCN
properties, removal processes . . .

Represent aerosol processes in chemical transport models.
Evaluate models by comparison with observations.
Satellite measurements for spatial coverage.

Calculate forcings in chemical transport models and GCMs.

Measurement based determination of aerosol forcings.



DIRECT DETERMINATION OF AEROSOL FORCINGS AT ARM SITES

Measurements 24-7-365
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TAKE HOME MESSAGES

Aerosol forcing 1s substantial in the context of forcing over the
industrial period.

This forcing 1s quite uncertain in that context.

This uncertainty has major implications on the interpretation of
climate change over the industrial period and projected future
climate change.

Many aerosol processes are not well understood. We are still in
discovery stage.

The modeling 1s way ahead of the understanding.

Measurement techniques have greatly improved in the past few
years, leading to important insights and capabilities.

This situation calls for greatly enhanced effort in quantifying aerosol
influences on radiation and cloud & precipitation processes.





